Chemistry Paper 1

Question number	Answer	Mark
$1(\mathrm{a})$	Mg	1

Question number	Answer	Mark
1b)	C	1

Question number	Answer	Mark
1(c)	O (accept 8)	1

Question number	Answer	Mark
1(d)	2/alkaline earth	1

Question number	Answer	Mark
1(e)	7/halogen	1

Question number	Answer	Mark
2(a)	B - Stop clock E - funnel	2

Question number	Answer	Mark
2(b)	C/pipette D/measuring cylinder (answers in either order)	2

Question number	Answer	Mark
2(c)	E/funnel	1

Question number	Answer	Mark
3(a)(i)	From top to bottom Proton Electron Neutron	

Question number	Answer	Mark
3(a)(ii)	8	1

Question number	Answer	Mark
3(a)(iii)	Be/Beryllium	1

Question number	Answer	Mark
3(b)	•Same number of protons/atomic number Different number of neutrons/mass number/nucleon number	2

Question number	Answer	Mark
4(a)	1 Oxygen 2 Water	2

Question number	Answer	Mark
4(b)	Iron oxide/rust	$\mathbf{1}$

Question number	Answer	Mark
4(c)	1 mark for each, maximum 2 - Oil - grease/polish - paint - plastic - zinc - Accept chrome/chromium Reject copper/magnesium	2

Question number	Answer	Mark
5(a)	Iron tube diagram completed with 5 or fewer bubbles Magnesium diagram completed with 7 or more bubbles	$\mathbf{2}$

Question number	Answer	Mark
5(b)	Zinc + hydrochloric acid \rightarrow zinc chloride + hydrogen	1

Question number	Answer	Mark
5(c)	Copper/silver/gold/platinum	$\mathbf{1}$

Question number	Answer	Mark
5(d)	1 mark for each, maximum 2, eg • Water/ $\mathrm{H}_{2} \mathrm{O} /$ steam - Oxygen $/ \mathrm{O}_{2} /$ air - Metal salt (solutions) A. Allow metal oxides Allow suitable alternatives	

Question number	Answer	Mark
6(a)(i)	Shared pair of electrons	1
Question number	Answer	Mark
6(a)(ii)	$\mathrm{H} \times \mathrm{H}$ (accept two \times or two \cdot)	1
Question number	Answer	Mark
6(b)	Test - lighted/lit splint Result - (squeaky) pop/explosion	2
Question number	Answer	Mark
6(c)	(manufacture of) ammonia/margarine/ HCl	1
Question number	Answer	Mark
6(d)	Hydrogen + oxygen \rightarrow water	1
Question number	Answer	Mark
6(e)(i)	Colourless White Blue	3
Question number	Answer	Mark
6(e)(ii)	$\begin{aligned} & \hline \text { Before }-27 \\ & \text { After }-32.5 \\ & \hline \end{aligned}$	2
Question number	Answer	Mark
6(e)(iii)	5.5 (ecf)	1
Question number	Answer	Mark
6(e)(iv)	B	1
Question number	Answer	Mark
7(a)	Heat	1
Question number	Answer	Mark
7(b)(i)	Diffusion	1

Question number	Answer	Mark
7(b)(ii)	Ammonium chloride $/ \mathrm{NH}_{4} \mathrm{Cl}$	1

Question number	Answer	Mark
7(b)(iii)	Ammonia faster/hydrogen chloride slower	1

Question number	Answer	Mark
7(b)(iv)	A: Red B: Blue	2

Question number	Answer	Mark
$8(a)(\mathbf{i})$	A and C	2

Question number	Answer	Mark
8(a)(ii)	Contains a (carbon to carbon) double/multiple bond/can undergo addition reactions	1

Question number	Answer	Mark
8(b)(i)	Orange/yellow (1) - colourless (1)	$\mathbf{2}$

Question number	Answer	Mark
8(b)(ii)	Correct structure of 1,2 - dibromoethane	1

Question number	Answer	Mark
$\mathbf{8 (c)}$	Correct structures for two isomers of $\mathrm{C}_{4} \mathrm{H}_{8}$ But - 1 - ene, but - 2 - ene (cis + trans) Cyclobutane, cyclomethylpropane, methylpropene	$\mathbf{2}$

Question number	Answer	Mark
9(a)	Anticlockwise from top: Haematite Molten iron Slag	3

Question number	Answer	Mark
9(b)(i)	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$, ignore state symbols	1

Question number	Answer	Mark
9(b)(ii)	Heats it up/raises temperature/exothermic	1
Question number	Answer	Mark
9(c)	$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$	1
Question number	Answer	Mark
9(d)	Loss of oxygen/ Fe^{3+} gains electrons/Fe ions gains electrons/Fe (III) gains oxygen (reject - Fe gains electrons)	1
Question number	Answer	Mark
9(e)(i)	Aluminium too reactive/more reactive than carbon/accept Al very high in the reactivity series	1
Question number	Answer	Mark
9(e)(ii)	Any suitable use, eg airplanes PLUS Property must be related, eg low density eg Specified transport - low density (not light) Cooking foil/drink cans - easily moulded/malleable Power cables - good conductor of electricity Window frames/cars - does not corrode Credit any other suitable Answers	2
Question number	Answer	Mark
10(a)(i)	Any two from: Fizz/bubble Move/darts around Melts/forms a ball/ Gets smaller/disappears (reject dissolves)	2
Question number	Answer	Mark
10(a)(ii)	Sodium + water \rightarrow sodium hydroxide + hydrogen (accept correct formulae equation)	1
Question number	Answer	Mark
10(b)(i)	Orange/yellow	1

Question number	Answer	Mark
10(b)(ii)	Flame test	1
Question number	Answer	Mark
10(c)	Blue/purple (solution made is) alkaline/(contains) hydroxide ions OH^{-1} not just 'alkali metal' $\mathrm{pH} 11 \rightarrow 14$ (any in range)	2
Question number	Answer	Mark
10(d)	- Electrons being transferred between oxygen and sodium (can be wrong way round) - Idea of sodium losing electron(s) and oxygen gaining electron(s) - Correct number of electrons involved (sodium lose 1, oxygen gain 2) (sharing $=0$ marks)	3
Question number	Answer	Mark
11(a)(i)	All points plotted correctly (-1 per error) - 2 marks Smooth curve - 1 mark	3
Question number	Answer	Mark
11(a)(ii)	Point at $(46,65)$ circled	1
Question number	Answer	Mark
11(a)(iii)	Any one from: - Marble chips bigger/surface less - Acid too cool - Volume of acid too small - Mass of chips too small - Acid more dilute - or reason that could cause this	1
Question number	Answer	Mark
11(b)(i)	$\begin{array}{ll} \hline \text { Read values from graph: } 76 \pm 1 \\ \text { cq } & 45 \pm 1 \\ \hline \end{array}$	2
Question number	Answer	Mark
11 (b)(ii)	cq on (i): 0.013 $0.022 \min 2$ significant figures	2

Question number	Answer	Mark
11(b)(iii)	(the higher the temperature the) faster (the reaction) cq on (ii)	1
Question number	Answer	Mark
11(b)(iv)	- Particles have more energy - Move faster/more have energy greater than activation energy - More collisions per second/more frequent collisions greater proportions of collisions are successful	3
Question number	Answer	Mark
11(c)	Any suitable way of cooling flask/contents, eg an ice bath Do not accept ideas based on doing the reaction somewhere else.	1
Question number	Answer	Mark
12(a)	Bitumen Gasoline Bitumen	3
Question number	Answer	Mark
12(b)	Cracking Heat/400-1000 ${ }^{\circ} \mathrm{C} /$ high temperature (reject boil) Steam/catalyst/(high) pressure/5-100 atm	3
Question number	Answer	Mark
12(c)(i)	$2 \mathrm{CH}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+4 \mathrm{H}_{2} \mathrm{O}$ All formula correct (1 mark) Formula balances (1 mark)	2
Question number	Answer	Mark
12(c)(ii)	Toxic/poisonous/death/fatal (reject suffocate) Correct reference to blood or haemoglobin	2
Question number	Answer	Mark
13(a)	2.8.7	1
Question number	Answer	Mark
13(b)	7	1

Question number	Answer	Mark
13(c)	Brown/orange (to) colourless	2

Question number	Answer	Mark
13(d)(i)	Red/pink (hydrobromic acid formed $/ \mathrm{H}^{+}$ions present	2

Question number	Answer	Mark
13(d)(ii)	Blue No acid formed/no reaction/no H^{+}ions	2

Question number	Answer	Mark
14(a)(i)	$(1+80+) 81$	1

Question number	Answer	Mark
14(a)(ii)	$1.62 \div 81$ $=0.02$ (ALLOW ecf)	2

Question number	Answer	Mark
14(a)(iii)	$0.02 \div 0.25$ $=0.08$ (ALLOW ecf)	2

Question number	Answer	Mark
14(a)(iv)	0.08×81	
	$=6.5 / 6.48$ OR	
	$1.62 \times 4=6.5 / 6.48$ (ALLOW ecf)	

Question number	Answer	Mark
14(b)(i)	$\mathrm{HBr}+\mathrm{NaOH} \rightarrow \mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}$	1

Question number	Answer	Mark
14(b)(ii)	Any from: H^{+}(ions) react with OH^{-}(ions) OH^{-}(ions) gain protons	1

Question number	Answer	Mark
14(c)(i)	0.02×0.2 $=0.004$ $(20 \times 0.2$ $=4(=1$ ecf $)$	

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 14(c)(ii) | $0.004 \div 0.1$ OR $20 \times(0.2 \div 0.1)$
 $=0.04 \mathrm{dm}^{3}$ $O R=40 \mathrm{~cm}^{3}$ | |
| Units needed
 ALLOW ecf | | 2 |

